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T he goal of pervasive computing 
research is to create devices or sys-

tems that can leverage computation-
ally rich environments to support daily 
human-computer interactions. The use 
of smartphones and their data- intensive 
apps has created novel opportunities to 
exploit such network traffic for moni-
toring and optimizing real-world pro-
cesses. Research has shown that we 
can use cellular call data records and 
cellular signal traces to infer large-scale 
transportation patterns1 and the level 
of congestion on roadways, respec-
tively.2 Similarly, pervasive wireless 
infrastructures (such as Wi-Fi and Blue-
tooth) provide increasing convenience 
in our day-to-day activities. Further-
more, we have found that we can use 
signal readings from the Wi-Fi traffic 
consumed by smartphones to monitor 
a finer-scale yet common process in our 
daily lives—human queues.

We often wait in long lines at many 
different places—including at retail 
stores, banks, theme parks, hospitals, 
and transportation stations. We’ve 
found a way to exploit the existing 
Wi-Fi infrastructure to extract unique 

Wi-Fi signal patterns from the smart-
phones of people in line to estimate 
the wait time. The major advantage of 
our approach is that it can work under 

real-world queue scenarios in vari-
ous environments without requiring a 
specialized infrastructure or incurring 
manpower overhead. Furthermore, 
our solution only requires that a small 
 fraction of people waiting in line use 
Wi-Fi on their smartphones.

MONITORING HUMAN QUEUES
Figure 1 presents an abstraction of a 
human queue in a typical environment. 
The waiting period is the time between 
arrival and receipt of service. During 

the service period, people might pay for 
items or accept treatment, depending on 
the service. People exit the queue during 
the leaving period. Note that our con-
cept is interpreted loosely—people don’t 
need to stand in a line but could sit in 
a waiting room, and they might not be 
served in a strict first-in, first-out order.

Real-time quantification of the wait-
ing and service times in such queues can 
help optimize service processes across 
various industries by helping managers, 
service providers, travelers, and even 
customers change their behavior and 
processes as needed. Managers could 
make staffing decisions based on the 
service length derived from the queue 
measurements. For example, during 
certain hours of the day, the wait for ser-
vice might grow longer at a coffee shop 
due to increased demands for espresso 
drinks compared to other items. In such 
a case, it might be more effective to 
change the staffing to use skillful baris-
tas as opposed to simply adding staff.

Similarly, a hospital emergency 
department might want to have expe-
rienced nursing staff help with  triage 
when waiting times for patients become 
too long. Airport checkpoints experienc-
ing abnormally long delays could divert 
screeners from queues with shorter 
waiting times. Customers also can ben-
efit from accurate queue measurements. 
For example, knowing when the check-
out lines in a warehouse are expected to 
be shorter could help a customer better 
arrange his or her schedule.
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Our approach can work 
under real-world queue 

scenarios in various 
environments without 
requiring a specialized 

infrastructure.
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Existing solutions to the queue- 
monitoring problem often rely on 
 cameras3 or special sensors (such as 
infrared4 or floor-mat sensors5) at mul-
tiple locations. Bluetooth signals from 
smartphones have also been exploited to 
measure travel times in airports and for 
vehicle traffic. However, these solutions 
require multiple sensors to fully monitor 
a single queue, which increases installa-
tion and system costs. In addition, these 
techniques, which use wireless networks, 
are too coarse-grained to differentiate 
between the waiting and service time.

A SINGLE WI-FI SIGNAL-BASED 
APPROACH
Our approach uses a single Wi-Fi moni-
tor, close to the front of the queue, to 
measure the received signal strength 
of packets emitted from phones. Intui-
tively, the received signal power should 
follow a known pattern, increasing as 
a smartphone user moves toward the 
service point and the phone moves 
closer to the monitor. When the person 
is receiving the service, the signal power 
should be strong and relatively stable. 
Finally, the received signal power drops 
dramatically when the person exits the 
service point.

Figure 2 presents the received signal 
strength (RSS) trace of a smartphone in 
a queue collected from a single Wi-Fi 
monitor at the service desk in a coffee 
shop. The captured RSS trace reflects 
the pattern of the distance between the 
smartphone user and the service desk.

Detection Challenges
Accurately discerning the time points—
when a person begins and ends ser-
vice—with a single-point monitoring 
system is challenging, because the 
 multipath, shadowing, and fading com-
ponents of a wireless signal are quite 
dynamic due to the movements of the 
person and surrounding people. Here, 
we summarize the major challenges to 
implementing our system.

Tracking queues. Our low infrastructure 
approach—using only a single Wi-Fi 

monitor—can’t uniquely determine the 
phone’s position. Our solution should 
be able to identify the unique character-
istics presented in the smartphone’s sig-
nal traces to perform queue parameter 
estimation without needing to explic-
itly localize the phone.

Dealing with real environments. 
Although the distance between the 
smartphone and the service desk domi-
nates the received signal, the RSS is 

affected by various factors, including 
user movements, changing environ-
ments, signal interference, and the 
multi-path (Rayleigh fading) effect 
typical of indoor environments. Also, 
different holding styles and vibrations 
of smartphones also cause noisy RSS 
readings. Moreover, people standing in 
queues cause large signal attenuation, 
because over 60 percent of the human 
adult body is water, which heavily 
absorbs Wi-Fi signals. Thus, the system 
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Figure 1. Important time periods and corresponding positions in a human queue.
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Figure 2. Illustration of special queue-related patterns embedded in the signal trace 
collected from a smartphone in a queue.

PC-13-02-Smartphones.indd   15 03/04/14   2:52 PM



16 PERVASIVE computing www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

should be designed in such a way that 
it can cope with noisy signal readings.

Identifying queue-related signal traces. 
The received signal traces extracted 
from smartphones can’t be directly used 
to estimate queue parameters, because 
trends of the received signal could occur 
after the queue process that are similar 
to the RSS trend within the queue. An 
effective data-calibration mechanism is 
required to identify which segment of 
the RSS trace includes only the impor-
tant periods of the queue process.

System Overview
Our system comprises three main sub-
tasks: data calibration, integration of 
multiple antennas, and queue param-
eter determination. Figure 3 shows the 
flow of our system. The Wi-Fi moni-
tor discovers the smartphone when 
the user enters the queue and starts to 
passively record the phone’s RSS read-
ings. Our system first applies data cali-
bration to the RSS trace, which aims to 
preserve the unique trend presented in 
the raw RSS trace while removing high 

 frequency noise. The system also identi-
fies segments of the RSS trace contain-
ing related time periods for measuring 
queue parameters.

To filter out signal outliers and 
obtain a reliable Wi-Fi signal trace, 
the system further integrates multiple 
antennas, which already exist in many 
Wi-Fi access points. This subtask com-
bines the selected RSS traces from two 
antennas in the Wi-Fi monitor to gener-
ate an integrated signal trace that for-
tifies the unique pattern of the signal 
associated with important time periods 
of the queue.

Finally, queue parameter determina-
tion implements a feature-driven scheme 
to infer the critical time points in the 
queue. The critical time points—the 
beginning of service (BoS), leaving point 
(LP), and end of leaving point (EoL)—
are used to  estimate the queue param-
eters, including the waiting period, 
service period, and leaving period. Spe-
cifically, the waiting period is the time 
interval between the BoS and the start-
ing time of the trace, whereas the service 
period is the time interval between the 

BoS and the LP. The leaving period is the 
time interval between the LP and EoL.

FEATURE-DRIVEN SCHEME
We developed a feature-driven scheme 
for our system to identify the critical 
time points in a human queue. Because 
the RSS value changes dramatically 
when people leave the queue after ser-
vice, the features associated with the 
leaving period are the most obvious 
and easy to extract. Therefore, when 
designing the feature-driven scheme, 
we employed a time-reversed strategy, 
which directly applies the  features asso-
ciated with the leaving period in the RSS 
trace to determine the EoL first and then 
the LP and the BoS.

In particular, we identified three fea-
tures extracted from the RSS trace asso-
ciated with the leaving period:

the leaving period has the longest 
consecutive negative-slope segments 
of the selected RSS trace;
the received signals before the leaving 
period are stable with the highest ampli-
tude of the selected RSS trace; and
the leaving period experiences the 
largest decrease of the signal in the 
selected RSS trace.

There are two major components in the 
scheme: the EoL estimator and LP/BoS 
estimator. The EoL estimator exploits 
the three features just listed to determine 
whether a consecutive negative-slope 
segment is likely to be a leaving period, 
which indicates the starting time of the 
segment to be EoL. The LP/BoS estimator 
exploits the observation that the distri-
butions of Wi-Fi signal changes (that is, 
the slopes of RSS) before and after the 
LP and BoS are significantly different to 
identify the LP and the BoS, respectively.

EVALUATION
We investigated the Wi-Fi device den-
sity in a coffee shop for one month to 
determine whether a sufficient amount 
of Wi-Fi users are present in human 
queues to facilitate queue measure-
ments. We used a Wi-Fi monitor, placed 
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Figure 3. Flow overview of our queue-monitoring system.

PC-13-02-Smartphones.indd   16 03/04/14   2:52 PM



APRIL–JUNE 2014 PERVASIVE computing 17

SMARTPHONES

BoS and the LP. The leaving period is the 
time interval between the LP and EoL.

FEATURE-DRIVEN SCHEME
We developed a feature-driven scheme 
for our system to identify the critical 
time points in a human queue. Because 
the RSS value changes dramatically 
when people leave the queue after ser-
vice, the features associated with the 
leaving period are the most obvious 
and easy to extract. Therefore, when 
designing the feature-driven scheme, 
we employed a time-reversed strategy, 
which directly applies the  features asso-
ciated with the leaving period in the RSS 
trace to determine the EoL first and then 
the LP and the BoS.

In particular, we identified three fea-
tures extracted from the RSS trace asso-
ciated with the leaving period:

the leaving period has the longest 
consecutive negative-slope segments 
of the selected RSS trace;
the received signals before the leaving 
period are stable with the highest ampli-
tude of the selected RSS trace; and
the leaving period experiences the 
largest decrease of the signal in the 
selected RSS trace.

There are two major components in the 
scheme: the EoL estimator and LP/BoS 
estimator. The EoL estimator exploits 
the three features just listed to determine 
whether a consecutive negative-slope 
segment is likely to be a leaving period, 
which indicates the starting time of the 
segment to be EoL. The LP/BoS estimator 
exploits the observation that the distri-
butions of Wi-Fi signal changes (that is, 
the slopes of RSS) before and after the 
LP and BoS are significantly different to 
identify the LP and the BoS, respectively.

EVALUATION
We investigated the Wi-Fi device den-
sity in a coffee shop for one month to 
determine whether a sufficient amount 
of Wi-Fi users are present in human 
queues to facilitate queue measure-
ments. We used a Wi-Fi monitor, placed 

close to the service desk, to passively 
monitor Wi-Fi packets sent by mobile 
devices (see Figure 4). A mobile device 
is determined to be within the queue 
if the received signal strength (RSS) 
amplitude of the device is greater than 
an empirical threshold (–45dBm). 
Meanwhile, we manually counted the 
arrival time of each new customer and 
the length of the queue as the ground-
truth for comparison. More than 30 
percent of the customers were using 
Wi-Fi (mostly via smartphones) while 
waiting in line for coffee, indicating 
that the number of Wi-Fi signal-emit-
ting devices in the queue would be 
sufficient for real-time human queue 
measurements.

We further collected 72 RSS traces in 
the coffee shop over the month, with 
volunteers in the queue carrying various 
smartphones, including an HTC 3D, an 
HTC EVO 4G, and a Nexus One. When 
using our system, the median error of 
the LP and BoS estimation was approxi-
mately 4 seconds, and the median errors 
of the derived waiting and service time 
periods was less than 7.5 seconds, 
which is only approximately 11 per-
cent of the ground truth. This indicates 
that our system is effective in measuring 
human queues with high accuracy using 
only a single-point Wi-Fi signal monitor 
and a sample of phones in the queue.

O ur Wi-Fi-based solution for queue 
measurements could enable a 

wealth of new applications, such as 
bottleneck analysis, shift assignments, 
and dynamic workflow scheduling. 
With improved accuracy, compatibility, 
and security, the Wi-Fi-based solution 
could create a minimum infrastructure 
approach to provide real-time queue 
information instead of using cameras 
or special sensors. This queue-monitor-
ing system could also potentially use 
existing Wi-Fi access points without 
adding the additional single monitor.

By using the already-deployed Wi-Fi 
infrastructure in various environ-
ments, we offer low-cost and highly 

flexible pervasive queue monitoring. 
Our approach not only benefits queue 
monitoring in small public areas but 
also provides convenient solutions for 
daily work practices in transportation, 
such as dynamically tracking the con-
gestion at bus and train stations, which 
would be a critical basis for adjusting 
the bus and train schedules or boarding 
and payment processes. 
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Figure 4. System evaluation: (a) an illustration of the experimental setups and (b) the 
actual coffee shop environment.
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